Newsletter

Maszyny, które uczą się (także) na naszych błędach Efekt bumerangu: uczymy SI naszych błędów, a ona nam je oddaje... zwielokrotnione!

Sztuczna inteligencja dziedziczy nasze uprzedzenia, a następnie je wzmacnia. Widzimy tendencyjne wyniki - i wzmacniamy je. Samonakręcający się cykl. Badanie UCL: uprzedzenie 4,7% w rozpoznawaniu twarzy wzrosło do 11,3% po interakcji człowieka ze sztuczną inteligencją. W HR każdy cykl zwiększa uprzedzenia ze względu na płeć o 8-14%. Dobra wiadomość? Technika "algorytmicznego lustra" - pokazująca menedżerom, jak wyglądałyby ich wybory, gdyby dokonała ich sztuczna inteligencja - zmniejsza uprzedzenia o 41%.

Niektóre ostatnie badania zwróciły uwagę na interesujące zjawisko: istnieje "dwukierunkowa" relacja między uprzedzeniami obecnymi w modelach sztucznej inteligencji a tymi, które występują w ludzkim myśleniu.

Ta interakcja tworzy mechanizm, który ma tendencję do wzmacnia zniekształcenia poznawcze w obu kierunkach.

Badania te pokazują, że systemy sztucznej inteligencji nie tylko dziedziczą ludzkie uprzedzenia z danych szkoleniowych, ale po wdrożeniu mogą je nasilać, wpływając z kolei na procesy decyzyjne ludzi. Tworzy to cykl, który, jeśli nie jest odpowiednio zarządzany, może stopniowo zwiększać początkowe uprzedzenia.

Zjawisko to jest szczególnie widoczne w ważnych sektorach, takich jak:

W tych obszarach niewielkie początkowe odchylenia mogą się nasilać w wyniku powtarzających się interakcji między ludzkimi operatorami a zautomatyzowanymi systemami, stopniowo przekształcając się w znaczące różnice w wynikach. znaczące różnice w wynikach.

Początki uprzedzeń

W ludzkiej myśli

Ludzki umysł naturalnie używa "skrótów myślowych", które mogą wprowadzać systematyczne błędy do naszych osądów. Teoria "podwójnego myślenia" rozróżnia

  • Szybkie i intuicyjne myślenie (skłonność do stereotypów)
  • Powolne i refleksyjne myślenie (zdolność do korygowania uprzedzeń)

Na przykład w dziedzinie medycyny lekarze mają tendencję do przywiązywania zbyt dużej wagi do początkowych hipotez, zaniedbując dowody przeciwne. Zjawisko to, zwane "błędem potwierdzenia", jest powielane i wzmacniane przez systemy sztucznej inteligencji przeszkolone w zakresie historycznych danych diagnostycznych.

W modelach sztucznej inteligencji

Modele uczenia maszynowego utrwalają uprzedzenia głównie poprzez trzy kanały:

  1. Niezrównoważone dane treningowe odzwierciedlające historyczne nierówności
  2. Wybór cech obejmujących atrybuty chronione (takie jak płeć lub pochodzenie etniczne)
  3. Pętle sprzężenia zwrotnego wynikające z interakcji z już zniekształconymi ludzkimi decyzjami

Jeden Badanie UCL z 2024 r. wykazało, że systemy rozpoznawania twarzy przeszkolone w zakresie ocen emocjonalnych dokonywanych przez ludzi odziedziczyły 4,7% tendencję do oznaczania twarzy jako "smutne", a następnie wzmocniły tę tendencję do 11,3% w kolejnych interakcjach z użytkownikami.

Jak się wzajemnie wzmacniają

Analiza danych platform rekrutacyjnych pokazuje, że każdy cykl współpracy człowieka z algorytmem zwiększa uprzedzenia ze względu na płeć o 8-14% poprzez wzajemnie wzmacniające się mechanizmy sprzężenia zwrotnego.

Gdy specjaliści ds. zasobów ludzkich otrzymują od AI listy kandydatów, na które wpłynęły już uprzedzenia historyczne, ich późniejsze interakcje (takie jak wybór pytań na rozmowę kwalifikacyjną lub oceny wyników) wzmacniają zniekształcone reprezentacje modelu.

Metaanaliza 47 badań z 2025 r. wykazała, że trzy rundy współpracy między ludźmi a SI zwiększyły dysproporcje demograficzne o 1,7-2,3 razy w obszarach takich jak opieka zdrowotna, kredyty i edukacja.

Strategie pomiaru i łagodzenia uprzedzeń

Kwantyfikacja poprzez uczenie maszynowe

Ramy pomiaru uprzedzeń zaproponowane przez Dong et al. (2024) pozwalają na wykrywanie uprzedzeń bez potrzeby stosowania etykiet "prawdy absolutnej" poprzez analizę rozbieżności we wzorcach decyzyjnych między grupami chronionymi.

Interwencje poznawcze

Technika "algorytmicznego lustra" opracowana przez naukowców z UCL zmniejszyła uprzedzenia ze względu na płeć w decyzjach o awansie o 41%, pokazując menedżerom, jak wyglądałyby ich historyczne wybory, gdyby były dokonywane przez system sztucznej inteligencji.

Szczególnie obiecujące okazują się protokoły szkoleniowe, które naprzemiennie wykorzystują pomoc IA i autonomiczne podejmowanie decyzji, zmniejszając wpływ transferu uprzedzeń z 17% do 6% w klinicznych badaniach diagnostycznych.

Implikacje dla społeczeństwa

Organizacje, które wdrażają systemy sztucznej inteligencji bez uwzględnienia interakcji z ludzkimi uprzedzeniami, stoją w obliczu zwiększonego ryzyka prawnego i operacyjnego.

Analiza spraw dotyczących dyskryminacji w zatrudnieniu pokazuje, że procesy rekrutacyjne wspomagane przez sztuczną inteligencję zwiększają wskaźniki sukcesu powodów o 28% w porównaniu z tradycyjnymi sprawami prowadzonymi przez ludzi, ponieważ ślady decyzji algorytmicznych dostarczają wyraźniejszych dowodów na rozbieżny wpływ.

W kierunku sztucznej inteligencji, która szanuje wolność i wydajność

Korelacja między zakłóceniami algorytmicznymi a ograniczeniami wolności wyboru wymaga od nas ponownego przemyślenia rozwoju technologicznego z perspektywy indywidualnej odpowiedzialności i ochrony efektywności rynku. Kluczowe znaczenie ma zapewnienie, że sztuczna inteligencja stanie się narzędziem poszerzania możliwości, a nie ich ograniczania.

Obiecujące kierunki obejmują:

  • Rozwiązania rynkowe zachęcające do opracowywania bezstronnych algorytmów
  • Większa przejrzystość zautomatyzowanych procesów decyzyjnych
  • Deregulacja sprzyjająca konkurencji między różnymi rozwiązaniami technologicznymi

Tylko poprzez odpowiedzialną samoregulację branży, w połączeniu z wolnością wyboru dla użytkowników, możemy zapewnić, że innowacje technologiczne nadal będą motorem dobrobytu i możliwości dla wszystkich, którzy są gotowi przetestować swoje umiejętności.

Zasoby dla rozwoju biznesu

9 listopada 2025 r.

Regulowanie tego, co nie zostało stworzone: czy Europa ryzykuje technologiczną nieistotność?

Europa przyciąga zaledwie jedną dziesiątą globalnych inwestycji w sztuczną inteligencję, ale twierdzi, że dyktuje globalne zasady. Jest to "efekt Brukseli" - narzucanie zasad na skalę planetarną poprzez siłę rynkową bez napędzania innowacji. Ustawa o sztucznej inteligencji wchodzi w życie zgodnie z rozłożonym w czasie harmonogramem do 2027 r., ale międzynarodowe firmy technologiczne reagują kreatywnymi strategiami unikania: powołując się na tajemnice handlowe, aby uniknąć ujawnienia danych szkoleniowych, tworząc zgodne technicznie, ale niezrozumiałe podsumowania, wykorzystując samoocenę do obniżenia klasyfikacji systemów z "wysokiego ryzyka" do "minimalnego ryzyka", forum shopping wybierając państwa członkowskie o mniej rygorystycznych kontrolach. Paradoks eksterytorialnych praw autorskich: UE wymaga, by OpenAI przestrzegało europejskich przepisów nawet w przypadku szkoleń poza Europą - zasada nigdy wcześniej niespotykana w prawie międzynarodowym. Pojawia się "podwójny model": ograniczone wersje europejskie vs. zaawansowane wersje globalne tych samych produktów AI. Realne ryzyko: Europa staje się "cyfrową fortecą" odizolowaną od globalnych innowacji, a obywatele europejscy mają dostęp do gorszych technologii. Trybunał Sprawiedliwości w sprawie scoringu kredytowego odrzucił już obronę "tajemnic handlowych", ale niepewność interpretacyjna pozostaje ogromna - co dokładnie oznacza "wystarczająco szczegółowe podsumowanie"? Nikt tego nie wie. Ostatnie nierozstrzygnięte pytanie: czy UE tworzy etyczną trzecią drogę między amerykańskim kapitalizmem a chińską kontrolą państwową, czy po prostu eksportuje biurokrację do obszaru, w którym nie konkuruje? Na razie: światowy lider w zakresie regulacji AI, marginalny w jej rozwoju. Rozległy program.
9 listopada 2025 r.

Outliers: Gdzie nauka o danych spotyka się z historiami sukcesu

Nauka o danych postawiła ten paradygmat na głowie: wartości odstające nie są już "błędami, które należy wyeliminować", ale cennymi informacjami, które należy zrozumieć. Pojedyncza wartość odstająca może całkowicie zniekształcić model regresji liniowej - zmienić nachylenie z 2 na 10 - ale wyeliminowanie jej może oznaczać utratę najważniejszego sygnału w zbiorze danych. Uczenie maszynowe wprowadza zaawansowane narzędzia: Isolation Forest izoluje wartości odstające poprzez budowanie losowych drzew decyzyjnych, Local Outlier Factor analizuje lokalną gęstość, Autoencoders rekonstruują normalne dane i zgłaszają to, czego nie mogą odtworzyć. Istnieją globalne wartości odstające (temperatura -10°C w tropikach), kontekstowe wartości odstające (wydanie 1000 euro w biednej dzielnicy), zbiorowe wartości odstające (zsynchronizowane skoki ruchu w sieci wskazujące na atak). Równolegle z Gladwellem: "reguła 10 000 godzin" jest kwestionowana - dixit Paula McCartneya "wiele zespołów spędziło 10 000 godzin w Hamburgu bez sukcesu, teoria nie jest nieomylna". Azjatycki sukces matematyczny nie jest genetyczny, ale kulturowy: chiński system liczbowy jest bardziej intuicyjny, uprawa ryżu wymaga ciągłego doskonalenia w porównaniu z ekspansją terytorialną zachodniego rolnictwa. Rzeczywiste zastosowania: brytyjskie banki odzyskują 18% potencjalnych strat dzięki wykrywaniu anomalii w czasie rzeczywistym, produkcja wykrywa mikroskopijne wady, których ludzka inspekcja by nie zauważyła, opieka zdrowotna weryfikuje dane z badań klinicznych z czułością wykrywania anomalii 85%+. Końcowa lekcja: w miarę jak nauka o danych przechodzi od eliminowania wartości odstających do ich zrozumienia, musimy postrzegać niekonwencjonalne kariery nie jako anomalie, które należy skorygować, ale jako cenne trajektorie, które należy zbadać.