Fabio Lauria

Sztuczna inteligencja w sektorze energetycznym: nowe rozwiązania dla produkcji i dystrybucji

18 kwietnia 2025 r.
Udostępnianie w mediach społecznościowych

Sztuczna inteligencja zmienia zarządzanie energią poprzez optymalizację odnawialnych źródeł energii i inteligentnych sieci. Algorytmy pomagają firmom energetycznym

  • Redukcja emisji CO2
  • Poprawa niezawodności odnawialnych źródeł energii
  • Przewidywanie popytu
  • Zapobieganie przerwom
  • Optymalizacja dystrybucji

Wpływ

  1. Wytwarzanie energii:

Algorytmy predykcyjne zwiększają niezawodność odnawialnych źródeł energii, przewidując warunki pogodowe dla energii słonecznej i wiatrowej. Konserwacja predykcyjna skraca czas przestoju instalacji i obniża koszty operacyjne.

  1. Zużycie energii:

Użytkownicy mogą przenieść zużycie energii poza godziny szczytu, zmniejszając koszty i obciążenie sieci. Inteligentne systemy domowe automatycznie dostosowują termostaty, oświetlenie i urządzenia.

  1. Zarządzanie siecią

Nowoczesne technologie cyfrowe rewolucjonizują sposób zarządzania infrastrukturą energetyczną. W szczególności sztuczna inteligencja okazuje się być nieocenionym narzędziem dla firm zajmujących się dystrybucją energii elektrycznej. Te zaawansowane systemy nieustannie analizują ogromne ilości danych z czujników rozmieszczonych w całej sieci, od linii przesyłowych po stacje transformatorowe.

Dzięki zaawansowanym algorytmom uczenia maszynowego możliwe jest obecnie identyfikowanie potencjalnych problemów, zanim spowodują one zakłócenia w świadczeniu usług. To prewencyjne podejście, znane jako konserwacja predykcyjna, przynosi niezwykłe rezultaty: kilka firm w tym sektorze doświadczyło drastycznego spadku przerw w świadczeniu usług, co skutkuje znaczną poprawą jakości usług oferowanych obywatelom i firmom.

Wpływ tej transformacji technologicznej wykracza poza zwykłe ograniczenie przestojów. Zdolność do przewidywania i zapobiegania problemom pozwala na bardziej efektywne zarządzanie zasobami, lepsze planowanie interwencji i, ostatecznie, bardziej niezawodne i zrównoważone usługi elektryczne dla całej społeczności.

Przykłady wpływu:

  • Siemens Energy: -30% przestojów
  • General Electric: 1 miliard dolarów oszczędności rocznie
  • Iberdrola: -25% marnotrawstwa energii w odnawialnych źródłach energii

Przetestowane aplikacje:

  • Shell i BP: optymalizacja operacyjna i redukcja emisji
  • Tesla: magazynowanie energii i czyste rozwiązania
  • Duke Energy i National Grid: modernizacja sieci energetycznej

Sztuczna inteligencja usprawnia zarządzanie energią:

  • Większa wydajność
  • Większa niezawodność
  • Bardziej zrównoważony
  • Taniej

Rozwój ten wspiera przejście na bardziej zrównoważony system energetyczny poprzez rozwiązania technologiczne, które są już stosowane w tej dziedzinie.

Wnioski

Sztuczna inteligencja rewolucjonizuje sektor energetyczny, oferując innowacyjne rozwiązania optymalizujące produkcję, dystrybucję i zużycie energii. Sama sztuczna inteligencja ma jednak swój własny wpływ na energię. Centra obliczeniowe wymagane do szkolenia i uruchamiania modeli sztucznej inteligencji wymagają znacznych ilości energii, a szacunki wskazują na zużycie nawet kilkuset kilowatogodzin podczas pojedynczego szkolenia złożonych modeli.

Aby zmaksymalizować korzyści netto ze sztucznej inteligencji w sektorze energetycznym, firmy przyjmują kompleksowe podejście. Z jednej strony, wykorzystując bardziej wydajne architektury i wyspecjalizowany sprzęt. Z drugiej strony, zasilając centra obliczeniowe energią odnawialną, tworząc cnotliwy cykl, w którym sztuczna inteligencja pomaga lepiej zarządzać źródłami odnawialnymi, które z kolei zasilają systemy sztucznej inteligencji.

Innowacje w zakresie wydajności obliczeniowej i technologii chłodzenia centrów danych, wraz z wykorzystaniem energii odnawialnej lub, tam gdzie jest to dozwolone, energii atomowej, będą miały kluczowe znaczenie dla zapewnienia, że sztuczna inteligencja pozostanie zrównoważonym narzędziem transformacji energetycznej.

Długoterminowy sukces tego podejścia będzie zależał od zdolności do zrównoważenia korzyści operacyjnych systemu z jego zrównoważeniem energetycznym, przyczyniając się w ten sposób do prawdziwie czystej i wydajnej przyszłości. Więcej na ten temat napiszę później.

Fabio Lauria

CEO i założyciel | Electe

CEO Electe, pomagam MŚP podejmować decyzje oparte na danych. Piszę o sztucznej inteligencji w świecie biznesu.

Najpopularniejsze
Zarejestruj się, aby otrzymywać najnowsze wiadomości

Otrzymuj cotygodniowe wiadomości i spostrzeżenia na swoją skrzynkę odbiorczą
. Nie przegap!

Dziękujemy! Twoje zgłoszenie zostało odebrane!
Ups! Coś poszło nie tak podczas wysyłania formularza.